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Recurrent Versus Diffusive Dynamics 
for a Kicked Quantum System 

M. Combescure  ~ 

Received May 30, 1990; final October 3, 1990 

We study the dynamics of a two-level quantum system subject to a time- 
dependent kicking perturbation modulated along the Thue-Morse sequence. 
For a nontrivial set of the parameters, the quantum autocorrelation function is 
explicitly calculated, and splits into a purely recurrent and a purely diffusive 
part. Furthermore, the diffusive part is directly related to the (singular con- 
tinuous) correlation measure of the Thue-Morse sequence. 

KEY WORDS: Quantum instability; Thue-Morse sequence; quantum 
dynamics; two-level quantum systems. 

1. I N T R O D U C T I O N  

The dynamics of periodically driven quantum systems has received a great 
deal of attention in recent years, especially regarding their long-time 
behavior: is it regular and recurrent, like the classical dynamics of regular 
systems, or is it irregular and diffusive, as for classically chaotic 
systems?~5 8.J2 16.23,27 29) The prototype of these investigations is the well- 
known "kicked rotator," which has been intensively studied, both on the 
classical and the quantum level: beyond a critical value of the size of the 
"kicks," the classical dynamics is entirely chaotic, whereas the quantum 
dynamics exhibits, at least numerically, the so-called "quantum suppression 
of classical c h a o s .  ' '(7' ~3) For time-periodic systems, a convenient mathemati- 
cal tool for the study of the quantum long-time behavior is the Floquet 
operator, namely the quantum evolution operator U(T, 0) between times 0 
and T (T is the time period); more precisely, the spectral properties of 
U(T, 0) contain the main information on the quantum dynamics: to the 
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point spectral subspace of U(T, 0) corresponds a recurrent quantum evolu- 
tion, whereas the continuous spectral subspace of U(T, 0) yields a diffusive 
quantum evolution, with suitably decaying autocorrelation functions, as a 
result of the Riemann-Lebesgue lemma. 

With this characterization in mind, it is natural to expect that the 
"quantum suppression of classical chaos" is the persistence of a pure-point 
character of the spectrum of U(T, 0) in the large coupling limit. Several 
attempts in this direction have not yet provided a completely satisfactory 
answer, t6"7~ Many other time-periodic quantum systems have been 
investigated, either rigorously ~3'9 i,~ or numerically ~7'8''2~ (also see referen- 
ces therein quoted). Most of them indicate that time-periodic quantum 
systems are much more stable than their classical analogs, even in the large 
coupling limit. However, it is expected that some randomness in the time- 
dependent driving force destroys this stability of the quantum evolution: 
this has been actually exhibited by Guarneri ~15~ for a "randomly kicked 
quantum rotator," where the gaps between two consecutive kicks are inde- 
pendent nonnegative random variables distributed according to a common 
law. Here, of course, one has no Floquet analysis at one's disposal to study 
the long-time quantum evolution, and the occurrence of an instability in 
the quantum dynamics is related to a diffusive growth of the averaged 
expectation value of the energy. 

However, pure randomness in the time-dependent driving potential is 
not very easy to handle in general; halfway between the purely random and 
the purely periodic cases is the case of "deterministic disorder" induced by 
suitable substitution sequences. For example Luck et al. t2j~ (see also ref. 29) 
have considered the quantum evolution problem for two-level quantum 
systems with a driving perturbation which is quasiperiodic in time: the dis- 
crete kicks are generated by a Fibonacci sequence which is known to be 
quasiperiodic. Their numerical approach aims at the characterization of the 
response in the quantum evolution by analyzing the power spectrum and 
various correlation functions of the solution. They provide analytical and 
numerical evidence that the evolution exhibits in general some intermediate 
kind of behavior between quasiperiodic and random. Therefore, the 
quantum interference effects which are known to enforce stability in the 
time-periodic case are destroyed by simple controlled disorder such as that 
given by the quasiperiodic Fibonacci sequence. 

In this paper, we extend this approach of the dynamics of quantum 
two-level systems driven by time-dependent aperiodic perturbations to 
another type of substitution binary sequences: we take as a prototype the 
well-known Thue-Morse sequence, ~26~ which is known to have a purely 
singular continuous Fourier spectrum. 

Thus, (?n),~z is a doubly infinite sequence of 0 and 1, such that 
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( ? . ) . ~  is the Thue-Morse sequence starting from ~51 ~.~ 1, and 7 1 _ . = ? .  
(n ~ ~). The time-dependent Hamiltonian is taken as 

+ o o  

H(t)=Eaz+2ax ~ 7,,3(t--n) (1.1) 
- o o  

where E and 2 are real numbers, and ax, az the Pauli matrices 

Thus, a kick occurs at time n if and only if ? , =  1. To (1.1) can be 
associated a unitary time evolution operator U(t,s) satisfying the time- 
dependent Schr6dinger equation. We shall prove the following results: 

(i) There exists a nontrivial set ~ of parameters E, 2 (that seems to 
be dense in the square [0, lr] 2) such that U(2", 0 ) = ~  for some ne  ~. 

(ii) Under condition (i), the quantum dynamics is both recurrent 
and diffusive. Given any initial state, the quantum autocorrelation function 
(in time) is the Fourier transform of a measure which is the sum of a pure 
point measure and of a singular continuous measure. The latter is the 
suitably scaled "Riesz measure" arising from the Fourier transform of the 
Thue-Morse sequence, t26~ 

This descriptive formulation of the results will be given a precise 
mathematical form in Section2 (Theorems 1 and 2). In Section 3, we 
describe precisely the set ~ of values of the parameters (E, 2) such that (i) 
and (ii) hold. We believe that this approach can be generalized to other 
types of substitution sequences, either binary or not, even when the sub- 
stitution is of nonconstant length. This will be done in another publication. 

We conclude this introduction by stressing the close relationship 
between our time-dependent problem and the transfer matrix problem in 
quasicrystals or aperiodic crystals which has been dealt with recently in 
many papers. For the Thue-Morse case, see in particular refs. 2, 4, 22, and 
30 and references therein contained. 

2. T H E  Q U A N T U M  D Y N A M I C S  FOR 
H(t) =Eaz+Aax Z + =  = V.  6 ( t - n )  

(7.)z is a sequence of 0 and 1 given by the Thue-Morse substitution 
rule 
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where we have chosen, by convention, to write words from the right to the 
left (the reason will appear clearly below). The successive substitution rule 
is defined inductively in the following way: 

(2.2) ' ( l)) 

From (2.1), (2.2) it is easy to see that ~"(0) and ~"(1) are words made of 
2"- 1 times the letter 0 and 2"-  ~ times the letter 1 in an inductively defined 
order. For example, ~(1)=01, ~'z(1)=~(0){(1)= 1001, ~'3(1)=01101001, 
and so on, which defines inductively the 2" first terms of the Thue-Morse 
sequence (written from the right to the left). 

D e f i n i t i o n  1. Given M a finite word made of two letters a and b, 
let M be the word obtained from M by replacing a by h and vice versa. 

L e m m a  1. ~"(0) = ~"(1) (the proof is easily checked by induction). 

D e f i n i t i o n  2. For n>~ I, let ?, be the nth letter of the infinite 
sequence ~*'(I) (hence 2~ = 1), and let 7~ ,,= ~',,- 

Lemma 2. (Self-similarity of the Thue-Morse sequence.) Denote 
M,, = ~"(1); then, for any n, the infinite sequence obtained from { ' ( l )  by 
replacing each 1 by M,  and each 0 by hi', is nothing but ~'(1 ). 

We now define the quantum dynamics. The Hilbert space of quantum 
states is 

~ =  {(z,, z2)~C 2} (2.3) 

Either by using C ~ approximants of the b-pulses, or by going to 
Howland's formalism for time-dependent Hamiltonians, {jT"2s~ one con- 
cludes the existence of a two-parameter family of unitary operators U(t, s) 
in W such that 

U ( t , s ) = e  iE~:~, ~) if n < s < t < n + l  

lim U(t,s)=e-ie~,~ e ia.x if 7 , = t  (2.4) 
t .~" n + l , s  f n 

= e  -il''a: if 7 . = 0  

In other words, U(t, s) is discontinuous at times n such that ?. = 1 and 

lim U(t, s) = e-~ .x  (2.5) 
s ,~ n , t  "., n 

The family {U( t , s ) }  solves the quantum evolution problem for the 
Hamiltonian (1.1) in the following sense: it is the limit of the evolution 
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operator U~( t , s )  solving the time-dependent Schr6dinger equation when 
each 6 peak is replaced by some C ~'~ approximation q~ suitably converging 
to 6 when ~ goes to zero. 

Now restricting ourselves to the discrete times n, we denote 

U, = lira U(t,  s)  = U(n ~, n - I + ) (notation) (2.6) 
.'~ "~ I t  [ ,  l x .  n 

so that, by the chain rule, 

U(n +, 0 + ) = U , , U , _  , . . .  U, (2.7) 

From (2.4), we see that each U, can only be one of the two unitary 
matrices 

U = e iEtrz 

(2.8) 
V = e - i E c r r e  - iaax 

depending upon whether 7, equals 0 or 1. We immediately see a formal 
analogy with the transfer matrix problem for the tight-binding Schr6dinger 
equation with controlled disorder given by the sequence y,,. t2'4.3m Here, 
however, the elements of the matrix products are unitary 2 x 2 matrices of 
determinant 1, and therefore so is U(n +, 0 +) for any n. 

D e f i n i t i o n  3. Let V(t,  s)  be the quantum evolution operator for 
the Hamiltonian ( l . l )  with 7, replaced by (1 - 7,). Let .//,, = U(2 "+, 0 + ) 
and .]lg, = V(2" + , O + ). 

Then from the substitution rule (2.2) and Lemma 2.1 we immediately 
have the following result. 

L e m m a  3 .  ( i )  . / / / , , ,  , = ,~,,~,, 
(ii) d//,= U2. U2. 1"" UI 

~ .  = V2~ V2. , . . .  V, 

where 

u .=  v?.+ u(I -~,,) 
(2.9) 

v.=uT.+ v(1-~.) 

As in the transfer matrix approach of refs. 2, 4, and 30, the existence 
of a "trace map" is a central ingredient (see also ref. 1): 

L e m m a  4. Let x,, = �89 tr Jr Then we have: 

(i) �89 tr ~7,, = x,, 

(ii) Vn~>2: x , , + ~ - l = 4 x 2 ~ + ~ ( x , - l ) .  
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Proof .  Part (i) follows easily by induction, using the invariance of 
the trace under permutation, and Lemma 3(i). 

Part (ii) is an immediate consequence of the Cayley-Hamilton 
theorem for ,//. and Jr,, (refs. 1 and 2): Using Lemma 30) twice, we get 

= i ~ r  _ , . 1 1 .  

Taking the trace (and using its cyclicity), we get 

x . + , = � 8 9  ,.~.] , 

But J / .  and J/7. are both solutions of their characteristic equation 

X 2 - 2 x , X + ~  = 0  

and therefore 

Xn + 1 =�89 ~ ,  , - ~ ) ( 2 x .  ~.///. ~-~)}  

=2x~, , t r . /7 .  i./r , - x . + , ( t r . ~ .  l + t r . ~ .  

= l + 4 x ]  i ( x . - I )  

~)+t 

Now. starting from any given initial state ~uo, we denote 

~,, = U,, U .  i "'" Uj ~t'o = U(n ~, 0 ~ ) ~P~, 

qs,, = V,, V,, i "'" VI ~o  = V(n ~, 0 + ) ~uo 
(2.1o) 

which, using (2.7), means that ~u is the quantum state just after the nth 
kick. Then we show that the condition x.  = 1 (some integer n) is a strong 
recurrence condition: 

Theorem 1. If there is some n ~ ~ such that xn = 1, then: 

(i) Jg. = J/7. = ~ 

(ii) i f m = ( p - 1 ) 2 n + q ,  p e N ,  O ~ < q < ~ 2 " - l ,  then  

~-'lm : ~ p ~-'l q 31- (1 - T . )  q~q 
(2.tl) 

Proo f .  Part (i) results immediately from the fact that any unitary 
2 x 2 matrix of determinant 1 is of the form A = ~ cos ~ + i sin ~ f .  a, where 
f e R  3 is unitary, ~ is real ( ~  [0, 2n)), and a = ( a x ,  a , ,  a.) are the Pauli 
matrices. Therefore �89 tr A = cos ~ equals 1 if and only if ~ = 0, i.e., A = 4. 
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For (ii), recall the self-similarity of the Thue-Morse sequence (Lemma 2). 
It implies 

[ U(q +, 0 + ) �9 - �9 ~g. ~ J//. if v p = l  
U(m+ ' 0+ ) = ~ v-  1 factors 

V(q+, 0 + ) -2 �9 J//..//r ~/. if 7 p = 0  
p I hitClo rs 

and similarly for V(m +, 0+). Then, due to (i), we get 

U(m +, 0 + ) =TpU(q  +, 0 + ) + (1  - ~ p )  V(q +, 0 + ) 

V(m +, O+ )=ypV(q+,  O+ )+ ( 1 -  ~:p) U(q+, O ~ ) 

which, applied to the initial state ~u o, yields the result. 
We now study the quantum autocorrelation function. The spectral 

study of sequences with the aid of the correlation measure is a standard 
strategy in the study of dynamical systems. (26) We adapt this approach to 
our quantum evolution problem, which will appear as a powerful strategy. 
We show that under the "recurrent" assumption of Theorem 1, the Fourier 
spectrum of the substitution Thue-Morse sequence exactly manifests itself 
in the quantum autocorrelation measure. 

We first recall the useful notions of Fourier-Bohr spectrum and 
correlation measure for a sequence (m.).~ ~ j26) 

D e f i n i t i o n  4. The Fourier-Bohr spectrum of the sequence (m,,), ,~ 
is the subset of values of 2 in [0, 1 ] such that 

N 

lira N I Em,,e2m'~"#O (2.12) 
N �9 el, 0 

The correlation function for the sequence ( m . ) . ~  is the following limit 
(when it exists): 

N - i  

C , ( m ) =  lim N -~ ~ rhern,,+p (2.13) 
N ~ o o  p = O  

If it exists, it is the Fourier transform of a positive measure a,,(2)dA on 
[0, 1] called the correlation measure, where am(2) is the weak-star limit of 

IN , 2 N -  I mpeZi=v,~ (2.14) 
p 0 

Moreover, the Fourier-Bohr spectrum of the sequence (mp)p~ N is the 
support of the pure point part of the measure am(2). 
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Remark. For suitable sequences (mp)per~ defined by substitution 
rules, formulas (2.12), (2.14) are meaningful326~ For the Thue-Morse 
sequence of + 1 and - 1  which obeys 

m2p = ( -- I )P rnp 

m2n+ i = - m r  (2.15) 

m 0 ~ 1 

the correlation measure tr,,,(2) is the (weak-star) limit of the Riesz poly- 
nomials 

tr,.(/l)= lim 2 u ( I - - c o s 2 n k ) ( l - - c o s 4 r t 2 ) . . . ( I - - c o s 2 N + ~ n 2 )  (2.t6) 

which defines a purely singular continuous measure on [0, 1 ] (see ref. 26) 
and the Fourier-Bohr spectrum is empty. Note that (2.15) is one among 
the various possible definitions of the Thue-Morse sequence, and that 
m,, = 27, , + i - 1. 

Let now the sequence (mn)p~ ~ be such that the limits (2.13), (2.14) 
exist, and assume in addition that it is of mean 0, i.e., 

N - - I  

lim N i ~ m ~ = 0  [2.17) 
N ~ o~_, 

0 

Then given any n ~ N, we take two finite sequences of 2 ~ complex numbers 
( % , a ,  ..... ~2,- , )  and (aa, a ] , . . . ,~ ,_ l ) ,  and we define a new sequence 
(a j , )p~  in the following way: 

apz,~+q----~q-JrO~'qmp, q=O, 1 ..... 2 " -  1 (2.18) 

We then have the following result: 

Lemma ft. The correlation function of the sequence ( a p ) p ~  exists 
and is the Fourier transform of the correlation measure 

2 n 1 2 n -  t 

a, ,(2)= ~ 7 q a ( 2 - q 2 - ' ) + a , , , ( 2 " 2 )  Z ?'u ezi=qa (2.19) 
q = O  q ~  2 n + t  

r t where~u and 7q are quadratic forms in the % and %, respectively, and 
~'-q = ' 7q. 

Proof, We calculate the correlation function p e N--+ %(a) for the 
sequence (ar)p~ N using (2.13) and (2.18); it is easy to see that it exists, and 

-- r 
that no cross-terms ~qO~q, contribute, since the sequence rnp is assumed to 
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be of mean zero [see (2.17)]. This yields, for any p~l~, and q=0 ,  1 .... 
2 " - 1 ,  

2" q - -  1 

C2,p+q(a)=2 " ~, [C%~q+q,+~q, q+u,C,(m)] 
q' = 0 

2 n -  1 

+2  " y, [otq--~,O~q+q, 2,,+O~q-T:o~'q+q,_2,,Cp+l(m)] (2.20/ 
q ' = 2 n - - q  

Now, writing that Cp(a) is the Fourier transform 

1 

Ce(a) = fo eZi~ra"(2) d2 (2.21) 

we obtain the result, by noting that 

f~ dJ, e2ir,).(p2,+q)am(2n2)= {Cp(m) if q = 0  
otherwise 

(this last equality follows by cutting the integration interval [0, 1 ] into 2" 
subintervals and by using the 1-periodicity of a,,(2)). 

Now define the quantum autocorrelation function, which, under the 
recurrence condition of Theorem 1, can be shown to exist and to have nice 
properties: 

Definition 5. Given an arbitrary initial state ~Uo~.#' normalized 
to unity and the corresponding quantum state ~u,, at time n given by (2.10), 
we define n ---, C,e,,(n): 

N I 

Cv0(n)= lim N ' ~ (~u,,~u,,+p) (2.22) 
N ~ , x J  p = O  

when it exists, ( , )  being the usual scalar product in ~ .  
We then have: 

Theorem 2. Under the condition of Theorem 1, the quantum auto- 
correlation function n ~ Y_ ~ C~,o(n ) defined by (2.22) exists for any initial 
state gt o. Furthermore, it is the Fourier transform of a correlation measure 
a(2) of the form (2.19). 

ProoL Write 

~" \b.) 
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Then obviously 

C~,o(n ) = C , (n  ) + Cb(n ) (2.23) 

But using (2.t l)  and the fact that 7p+l=�89 +mr) ,  with mp satisfying 
(2.15), we get, for m = p 2 " + q ,  0~<q~<2"- 1, 

1 m r 
em =~ (e~ + ~ )+5 -  (e~- ~)  

so that, if 

we get 

~ . -  r ,q,; 

ap2, + q = otq + mpO(q 
q = 0 , 1  ..... 2"--1, p ~ N  

hr._,, + ~ = [I,, + m . F ' ~  

which is precisely the property (2.18) under which the conclusion of 
Lemma 5 holds. 

Remark .  Theorem 2 establishes that, up to a pure point part which 
reflects the "recurrent character" of the condition x , =  1, the Fourier 
spectrum of the Thue-Morse sequence exactly manifests itself in the 
quantum autocorrelation measure. But the only condition under which 
Lemma 5 holds true is the mean-zero character of the Thue-Morse 
sequence (m,) and the existence of its correlation measure. Therefore this 
approach can be generalized to other substitution sequences provided that 
the property 

3n ~ N: x,~ = 1 (2.24) 

holds true for a nontrivial set of parameters. This will be analyzed in 
another work. 

3. FOR WHICH SET OF PARAMETERS (E, A) ARE 
THEOREMS 1 AND 2 SATISFIED? 

We now want to show that property (2.24) for the Thue-Morse 
sequence defines a nontrivial set of parameters (E, 2) for the quantum 
problem defined by Hamiltonian (1). This is done by studying the trace 
map of Lemma 4(ii). 
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Defining 

y . =  1 - x . +  1 

789 

(3.1) 

r = U (r  J) u r (3.7) 
n>~3 

Using the description of ref. 2, one sees easily that the sets g . \g ._  1 are 
disjoint, n >i 3, and that 

r {y, =0,  Ix, I ~ 1} 

g3\g2 = {x, =0,  0~< y, ~<2} 

g4\g3 = {y, = 1, Ix,[ ~< l/x/2 } 

See Fig. I, where we have drawn the curves g. up to n = 7. 

and 

we see that 

y .  \ y . + j  4 x 2 y .  I (3.2) 

starting with initial data 

xz = cos 2Ecos 2 
(3.3) 

Yl = 2 cos 2 E [ 1 + cos 2 2 (3 - 4 cos 2 E)] 

It is clear that x .  e [ -  l, 1 ] and y .  e [0, 2] Vn e ~. Furthermore, one can 
check that the initial data (3.3) lie in the interior of the parabola (~)  

y =  2(1 - x  2) (3.4) 

Therefore, when the parameters (E, 2) vary in the square [0, ~]2, the initial 
data (3.3) describe the interior of the domain ~ in R 2 defined by 

0~<y~<2(1 - x  2) (3.5) 

Now our problem is very similar to that studied by Axel and Peyri6re, ~2) 
namely that of finding the preimages by the mapping (3.2) of the sets 
{x. = 1, some n}, with the only difference that their domain of initial data 
(x,,  yj)  is just the complement in [~2 of our domain c~. Thus, let for any 
n e f f ,  n>~2, 

g . =  {(xl, y , j e ~ :  x . =  1} (3.6) 
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Fig. 1. The domain N of initial data in the (x, y) plane, and the curves d'n up to n = 7. 

Moreover, for n >/4, 8~\8._ t lies on the union of 2"-  4 curves, so that 
8~ intersects the parabola (r at the points 

X = C O S  In, p 

y =  2 sin 2 tn, p 

where tn, p = ~ p 2 -  ~ + 2, p = 0, 1 ..... 2~- 2. Furthermore, numerical computa- 
tions 124'3~ show that the curves 8 , \~ ,_  1 enter the domain ~ in a com- 
plicated way, and invade it as n becomes higher and higher. This suggests, 
although we have not been able to prove it, that the set ~ densely fills the 
domain ~ ,  namely that any arbitrary small neighborhood of any point of 

contains at least one element of ~ (see Fig. 1 of ref. 30). The conclusion 
is therefore the following: 

T h e o r e m  3. If the parameters (E, 2) are such that the initiat data 
(3.3) of the trace mapping �9 belong to the set 8 defined by (3.7), then the 
conclusion of Theorem 2 holds true. 
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